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The LVC: Who We Are

* The LIGO and Virgo Collaborations: 1000+ scientists, engineers, and others
spread amongst 50+ academic institutions world wide (presence on all continents
except Africa and Antarctica)
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Gravitational Wave Observatories |
e Collectively develop and operate a network of three kilometer-scale

interferometers (LIGO Hanford, LIGO Livingston, Virgo), and a 600m pathfinder
interferometer (GEOG600)

e Two kilometer-scale interferometers under construction (KAGRA collaboration,
Japan) or in design process (LIGO India)
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Gravitational-Wave Source Spectrum

The Gravitational Wave Spectrum

Quantum fluctuations in early universe
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Gravitational-Wave Source Spectrum
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O1 BBH Events

arxiv:1606.04856
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Gravitational-wave detection and BBH: “Chirps” in the time domain (monotonically
parameterization: Unigue meld of increasing in frequency vs time)
“time domain” astronomy and Lower mass — Higher frequency content / longer
spectral methods “In band”
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Basic Terminology

_ observations: Putative strain from gravitational
d(t) o n(t) T h(t) wave is embedded in detector noise

S(lfl) = 25(]" — f’) <ﬁ(f)’fl(f,)> Noise power spectrum: Autocorrelation

of the noise in the frequency domain —
“limiting factor” of the sensitivity of the
Instrument

( a\b) — 9 / ~ &*(f )b(f ) Noise weighted inner product: frequency-domain

cross-correlation between two quantities
o S(f) °

Null Hypothesis (Ho): Data samples are Alternative Hypothesis (H1): data are
uncorrelated Gaussian noise with distributed as in null, after subtraction of the
variance proportional to S(f) signal model (h)

p(Hy) oc exp(—(d|d)/2) | p(Hy) < exp(—(d — hld—h)/2)
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Likelihood Ratio / Signal-to-Noise Ratio

Form the “likelihood ratio”:

p(d|Hy) ratio of probability of signal
A= Al H — €Xp (_(d‘h) + (hlh)/z) present vs. probability of not
P ( 0) __ — 72 present
=p =P
“matched filter” SNR | “characteristic” SNR |
0.35 — : ——r— 0.10 Invoke Neyman-
— (Gaussian noise Pearson lemma: At a
0.30 — p=3 | 0 os given threshold, this is
o o - P=9 o the most powerful test
T P ;0 we can apply —
:“’ 0.20 S 1 0.06  —~ maximizing the signal-to-
. — p = 50 R : :
o N noise ratio p=(d|h)
< 0.15 {004 = maximizes the likelihood
_ ratio
0.10
4 0.02 p: What we expect (with
0.05 perfect models)
- AN Al p: The statistic we
10" 10° measure

P
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GW Signal Detection Primer

= osFd(t) = R(H) + n)
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Searches maximize likelihood
analytically for speed anad
over masses/spins by brute
force (template banks)

SNR
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Putative strain is embedded in detector noise — cross
correlate the model with the data to extract a signal-to-
noise ratio (SNR, p) statistic — this maximizes the
likelihood (probability of signal vs probability of noise)

arxiv:1606.04856
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GW Signal Detection Primer
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Putative strain is embedded in detector noise — cross
correlate the model with the data to extract a signal-to-
noise ratio (SNR, p) statistic — this maximizes the
likelihood (probability of signal vs probability of noise)
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analytically for speed and
over masses/spins by brute
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Bayesian Parameter Estimation

Parameter Posteriors: Form the
P(M|H1 d) — p(,u)A(d|,u, Hl) posterior on a given parameter set
’ p(d) u from Bayes’ Law
Bayes Factor: Often overlooked
(posterior distributions normalized
p(d) — p(,u)A(dm, H1 )d,u manually) but encodes the

Bayesian signal vs. noise
comparison

PE Method 1: 15+ dimensional space explored by Markov-Chain Monte Carlo. Parallel
tempering: AT added for more efficient convergence time. Determine “convergence” by number
of effective, uncorrelated samples drawn using the autocorrelation length

Gelman-Rubin R = 1

Autocorrelation Function
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Bayesian Parameter Estimation

p( ,u) A(dl [, H 1) Parameter Posteriors: Form the

posterior on a given parameter set
p(d) u from Bayes’ Law

p(rulHla d) —

Bayes Factor: Often overlooked
(posterior distributions normalized
p(d) — p(u)A(dLu, Hl )d,u manually) but encodes the
, Bayesian signal vs. noise
comparison

PE Method 2: "Nested Sampling”; swarm of points exploring the likelihood space and
estimating the integrand. Allows much better estimation of the evidence (compared to
thermodynamic integration for MCMCQ)

Gelman-Rubin R = 1

Autocorrelation Function
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MCMC Param. Correlations: Masses and Spins
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Phys. Rev | ett. 116/241103

%

Parameter Degeneracies:
Primarily sensitive to the chirp mass
— leaves large degeneracies
along contours of chirp mass
(GW151226 approaching mz < 3

region)
(m1m2)3/5
M. = VE
(m1 + m2)
. M181,z + M2S2,
Xeff —
M1 T 12

Frequency content (and thus
“length Iin band” affected by
both effective spin and mass
ratio at same order In
expansion of radiation
amplitude/phase
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Systematics In Parameter Estimation

Phys. Rev. Lett. 116/241103
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This is costly, especially in higher
dimensions... need a good balance between
full information and resources. Some
approximations bias other physical
measurements

Systematic Errors: \We don’t know what the
right answer is. Hit it with the best waveform
models we have, covering a wide range of
physical features and calibrations to numerical
relativity. The answers end up being similar for
common parameters — careful and exhaustive

study of differences could give hints at underlying

physical processes!

30 Y']'YY]YIY‘YIY 1T 1

full precession
. non-spinning
. injection ()

arxiv:1601.02661
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Calibration Uncertainty

Problem: In reality, the strain measurement is derived from a differential phase between
two (nominally) coherent laser beams. We model the instrument response at different
frequencies to derive h from phase measurement. How do we deal with measurement

and calibration error?

h(f) = A(f)e V) — (A(f) + SA(f))e @) +oe(h)

arxiv:1602.03845
1.15 — T T
1
8 sk
: 1.1+ .
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= 0
§’ 09} g -6r
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Frequency (Hz)

We can empirically measure the error: typically of order 5-10% in amplitude and few
degrees in phase (very frequency dependent)
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Calibration Uncertainty

Problem: In reality, the strain measurement is derived from a differential phase between
two (nominally) coherent laser beams. We model the instrument response at different
frequencies to derive h from phase measurement. How do we deal with measurement

and calibration error?

h(f) = A(f)e D) — (A(f) + 6A(f)) e (@H+56(5))

30 .
H1 (mean, 90%)

L1 (mean, 909)
20

10

0

Phase (deg)

10

Amplitude (%)

-20 0

Model: Incorporate the amplitude/phase uncertainties into our Bayesian model as a set
of parameters to estimate. The overall uncertainty is modeled a spline fit with control
points in frequency space and errors attached to each point in relative amplitude and

phase (simulated noise shown here)
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Background Sample

Problem: Our noise is not Gaussian — it is contaminated with environmentally induced
transients; many of which can not be safely excluded with data quality concerns. How
do we model the background?

Model 1: Slide instrument data with
respect to each other, breaking time- Model 2: Build up a likelihood ratio
coincidence (and hence one of our ranking statistic from non-coincident
signal model assumptions) — build up event triggers and an analytical model of
coincidence events from the slides into a expected signal distributions
distribution in ranking statistic (SNR)

_ 2 2
( ) )\(p)"e A(p) E_p(pHaXHapLaXLa”' h)
p(p) = - 2 2
n! p(pHaXHapLaXLa”' n)
Model 2: Numerator is analytical and
Model 1: A(p) ~ R(p) X Tobs / Nslides — calculated almost directly from P(p|h),
the expected number at a given ranking but with the modeled expectation from
statistic value is now measured from the multiple detectors. The denominator is
background population factored into individual instruments and
determined empirically
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Likelihood Ratio Ranking Statistic

In P(pu1,pL1)
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Problem: Our noise is not Gaussian — it is contaminated with environmentally induced
transients; many of which can not be safely excluded with data quality concerns. How
do we model the background?

20 30 ﬁ&a > 50 2030 > 50
104 20 30 4&0 > 20 104 20 30 ;!g > 50
103 WS Search Result ‘ 103 mmm Search Result
102/ - Search Background ) 102 — Background including all search resulits
- Background excluding GW150914 i —— Background excluding only GW150914 ||
»n 10it { o 10%; 1
T 100t o m b {1 & 10°% -
>
@ 1071 T 1 31071} ‘
2 a GW150914 S 102 GW150914 |
g 103} . g 10-3} .
g 10-4 1 4 g 10-4 =
Z 1073t 2 105}
106} 10-5}
10741 1 107
10—8 H : . I.l ; ) .h . : i 10 8L . H H 3 2 3 H
8 10 12 14 ‘ 16 ]:8 . 20 22 24 10 20 30 40 50 60 70 80 90
Detection statistic p. Detection statistic In £

Answer: In both models, our background is estimated by constructing an estimate of
the rate of coincident triggers from the “no gravitational wave present” hypothesis set,
out...
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Event Significance

Problem: One cannot shield against gravitational waves (with current budgets).
However, in order to establish significance of a given event, However, how does one
contend with background contamination from the signal?

10° , :
+— IFAR-AS
10"t — APC-AS;
+—— gstlal-AS
= 10 +— Exact
] ' '
% --- JFAR-CR
3 : .
g 107y i-- APC-CR
E el % gstlal-CR
lO 3 : "}’;’ :
1054+
1070 Lo —
e | 1 A

Estimated False Alarm Probability

Solid lines represent various
methods (giving mostly similar

results) without signal removal.

Dashed lines do remove the

signal before calculating a false
alarm probability. Shaded regions

are uncertainty equated with
Poisson process error bars

Answer: \We don’t. A controlled study shows that methods which remove the signal
from its own background end up biasing detection confidence (e.g. p-values)

arxiv:1601.00130

Monday, September 19, 16


https://arxiv.org/abs/1601.00130
https://arxiv.org/abs/1601.00130

2

" Inferred Rates / Probability of Astrophysical Origin

L = H Abgpbg(ﬂ?z') T Afgpfg(ﬂ?z') eXP(—Abg - Afg)

Likelihood of obtaining ensemble of ranking statistics x; with two categories of events:
background (terrestrial) and foreground (astrophysical)
Nig,bg ~ €Xpected counts from each category
Dig, Pbg - Modeled or measured, for astrophysical distribution of binaries ptg ~ p™
Methods using LR ranking can divide out pog and use likelihnood statistic directly

Obtain posterior on \Lambda
which scales with the rate by

1 the sensitive space-time
p(Abg, Afg) — volume by margina!ization
\/ AbgAfg over the xi, applying a

Jeffrey’s prior on the rates

arxiv:1302.5341
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" Inferred Rates / Probability of Astrophysical Origin

Obtain probability of

. . Afepie(x
astrophysical origin by Pastro(Z|Ti) = / dAggdAyyg igPig () p(Agg, Apg|z:)
o . . Afgpfg(-"’-:) + Al)gpbg(I)
marginalizing against the
counts
LVT151012 ~ 87%
/ T N
10° - ' ' —~——F  probable foreground el
1071 = o - S g "
TR : : SRR | | S o —
S = 5 . 5
. 102 s 3
— = R
I I 10-2 =
e hn :
= 1078 - X :
: —
8 G
=t \-: [t =
Q.' 10——4 — Qﬂ -
! GW150914
10-° 1 , suppressed since , , ,
5 10 15 > 99% probable 8.5 9.0 9.5 10.0

Model 2 ranking stat. ' and :Ia;;:: the Model 1 ranking stat. '
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Towards Hierarchical Modeling

Problem: How do we measure populations with different characteristics”? For example:
we expect co-evolved binaries to have aligned BH spins, and cluster capture/dynamics
to have random spins. Can we integrate this information and model it with our data”

6 = {Mca OSL}
Afg — Afg(g)

P(Atg, Avg) = P(Afg, Abg, 0)

0.0 0.2 0.4 0.6 0.8 1.0

Answer: Integrate a set of parameters (8) into our source classification and counts.
Individual parameters like spin and mass distributions are folded naturally into the
expected ranking distributions and we form posteriors from the ensemble over those
parameters
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Events/5 GeV

Phys. Lett. B (716) 1

x 7

BBH Detection

Phys. Lett. B (716) 1

1 I ) 1 ] 1 l 1 ] I 1 I

[ e Data ATLA'S

I I ]

25 % - Background 72" H—>ZZ(')—> 4l
i B Background Z+jets, f
- Signal (m =125 GeV)

20 ;

" %/ Syst.Unc.
15[/s =7 TeV: [Ldt = 4.8 fb”
" (s=8TeV:|Ldt=5.8fb t

lllllllllllllllllllllll

lllllllllll

100 150 200 250
m,, [GeV]

Signal and Background (Higgs):
For a given decay channel (4 lepton), this
shows the background levels and
expected Higgs signal decay rates along
with the data collected — clear statistical
excess ~125 MeV

Signal and Background (GW):
Different parameterization, using a
likelihood ranking statistic modeling
background with the expected volumetric
(p™) distribution superimposed
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BBH Detection

Phys. Lett. B (716) 1

x 7

Phys. Lett. B (716) 1
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Signal and Background (Higgs):
For a given decay channel (4 lepton), this
shows the background levels and
expected Higgs signal decay rates along
with the data collected — clear statistical
excess ~125 MeV

Signal and Background (GW):
Different parameterization, using a
likelihood ranking statistic modeling

background with the expected volumetric
(p™) distribution superimposed
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BBH Detection

arxiv:1606.04856
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Basic Application of Hierarchical
Modeling:

Posterior distribution for exponent of mj
inferred from three astrophysically
distinguished events — note peak very
close to o = 2.35 (black vertical ling)

Signal and Background (GW):
Different parameterization, using a
likelihood ranking statistic modeling
background with the expected volumetric
(p™) distribution superimposed
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BBH Event Rates
arxiv:1606.04856

()(i 1 L lllllll 1 ] lllllll 1 ] lllllll I Ll

- Event Based
0.5 — GW150914
— |\/T151012

0.4

0.3

Rp(R)

0.1

Dealing with Multiple Event Categories:
Being unsure of the intrinsic source populations and origins, we calculate the event rates for
all three events and take the union to derive the overall event rate of BBH coalescence.
Also test distributions of events according to uniform in the logarithm of component mass

and according to the stellar initial mass function: p(m1) « m123°
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arxiv:1606.04856

BBH Event Rates
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Dealing with Multiple Event Categories:
Being unsure of the intrinsic source populations and origins, we calculate the event rates for
all three events and take the union to derive the overall event rate of BBH coalescence.
Also test distributions of events according to uniform in the logarithm of component mass

and according to the stellar initial mass function: p(m1) « m123°
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High Energy Neutrino Joint Search

neutrino galaxy catalog
E, |N PSF PSF, ., I
X, —21In (psky iPgw.iPclus,iPv, z) = ‘_ga‘axy rl
BG
— > X
Pu,i P(E EV ) neutrino neutrino directional
Delus ~ POIS( k. fu BGTwin d) significance cluster coincidence signiflcance
I I p
pgw’i -~ POIS(O, )\( )) Pv Pcluster psky | gw
Gw+neutrino
sky ™ /deGVV,gal(at 5) le/j «, 5) test statistic

Vj

Sky coincidence with GW150914 '

Multimessenger Searches:
Test statistic X (derived from Fisher’s
method) includes temporal (Poissonian)

and sky coincidence with GW information .
and also folds in p-values derived from W o L
neutrino energy and probability of GW (90% CL)
obtaining N > 1 neutrino I e

arxiv:1407.1042 arxiv:1602.05411
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Bayesian Noise Modeling

BayesWave/BayesLine:

Trans-dimensional Reverse Jump
Markov-Chain Monte Carlo (RIMCMCQC)

with simultaneous power spectrum, line

fitting, and coherent/incoherent signal

analysis
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Source: N. Cornish, M.
Millhouse (Montana State) T.
Littenberg (NASA/MSFC)
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Desiderata / Topics Skipped / In Progress

¢ \Weakly-model dependent transient searches, etc...

e Hybrid Monte-Carlo / direct posterior gridding

* Model selection in tests of general relativity

e More advanced methods of hierarchical modeling

e mass and spin distributions

e model dependent formation channel determination

e Noise fitting / removal / classification

e principle component analysis, machine/deep learning, Gaussian process
regression
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